"Syn-Effect" in Nucleophilic Addition of Amines to 1,3-Dienylsulfone

Masao Yamazaki, Samar Kumar Guha, Yutaka Ukaji,* and Katsuhiko Inomata*

Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University,

Kakuma, Kanazawa 920-1192

(Received February 9, 2006; CL-060170; E-mail: inomata@cacheibm.s.kanazawa-u.ac.jp)

The stereochemistry of the nucleophilic addition of amines to 1,3-dienylsulfone was investigated. The Z/E ratios of the resulting allylic sulfones varied with amines, solvents, temperature, and concentrations. The predominant formation of (Z)-isomer was rationalized by a "syn-effect," which could be mainly elucidated by $n/\sigma \rightarrow \pi^*$ interaction.

Previously, we investigated the stereochemistry of the isomerization of α -unsubstituted (E)-vinylic sulfones to the corresponding allylic sulfones in the presence of a base and found that the sterically unfavorable (Z)-allylic sulfones were predominantly formed.¹ This result was rationalized by a " $syn\text{-effect}$,"^{2,3}" which is primarily caused by $\sigma \to \pi^*$ interaction and/or 6π electron homoaromaticity (Figure 1).³

Recently, we revealed that the "syn-effect" works also in the desulfonylation reaction of α, α -dialkylated (E)-allylic sulfones,^{3a} the isomerization of (E) - α -fluorovinylic sulfones to the corresponding allylic sulfones under basic conditions, 3^b the conversion of (E) - α , β -unsaturated esters and aldehydes into the corresponding β , γ -unsaturated esters and silyl enol ethers,^{3c,3e}

Figure 1.

Table 1. The stereochemistry of the nucleophilic addition of various amines to 1,3-dienylsulfone 1

			Nucleophile (1.5 equiv.) ^a		Ts	
Ts		THF, 25 °C, Time		Nu $\mathbf{2}$		
Entry	Nucleophile		Time/h	$1/2^{5}$	Yield/ $\%$ ^c	Z/E^d
1	Me ₂ NH ^e	a	24	0/100	91	60/40
2	Et ₂ NH	b	72	19/81	75	74/26
3	nPr_2NH	c	72	52/48	43	85/15
4	iPr_2NH	d	72	100/0		
5	n Bu ₂ NH	e	72	48/52	46	87/13
6	n BuN(H)Me	f	72	0/100	85	72/28
7	$P\text{rN(H)}$ Me	g	72	38/62	58	80/20
8	Pyrrolidine	h	6	0/100	83	44/56
9	Piperidine	i	12	0/100	85	55/45
$10^{\rm f}$	nPrNH_2	j	72	11/89	70	21/79
$11^{\rm f}$	n BuNH ₂	k	72	11/89	71	23/77

^aConcentration was 150 mM in all cases. ^bThe ratios were determined based on the isolated yields. ^cIsolated total yield of 2. ^dThe ratios were determined by 400 MHz ¹H NMR spectra. ^eA commercially available 2.0 M solution of Me₂NH in THF was used. fFormation of $(TsCH_2CH=CHCH_2)_2NR$ (R = "Pr, 5%; "Bu, 7%) was observed.

respectively, the desilylation reaction of γ -silylated allylic and vinylic sulfones,^{3d} the elimination reaction of (E) -allylic acetates catalyzed by palladium under the specific conditions utilizing a base,^{3f} and the 1,4-eliminative ring opening of (E) -1-propenyloxirane derivatives by treatment with metal amides.^{3g}

For the preparation of allylic sulfones, nucleophilic addition to (E) -1-tosyl-1,3-butadiene (1) is a useful way. Interestingly, it was reported that addition of lithium dibutylcuprate to 1 gave only (Z) -1-tosyl-2-octene.⁴ However, both isomers were obtained in 96% yield with Z-preference $(Z/E = 65/35)$ as the result of our reexamination. This inconsistent result prompted us to investigate the stereochemistry of the nucleophilic addition of various amines to 1,3-dienylsulfone 1 in THF at 25° C and the results are summarized in Table 1. The Z/E ratios of the produced allylic sulfones 2a–2k varied depending on the kinds of amines. Acyclic secondary amines, especially nBu_2NH and nPr_2NH , showed relatively high Z-preference.

Next, the stereochemistry of the nucleophilic addition of $Et₂NH$ to 1,3-dienylsulfone 1 was examined in detail, paying attention to the effect of solvents, temperature, and concentrations, and the results are summarized in Tables 2 and 3. It was found that polar and less bulky ethers, such as DME and THF, showed high Z-selectivity (Table 2, Entries 2 and 5). It is noteworthy that the Z-selectivities were enhanced when the reaction was carried out at higher temperature (Entries $1-6$).

Table 2. The stereochemistry of the nucleophilic addition of $Et₂NH$ to 1,3-dienylsulfone 1 in various solvents

 $T_{\rm B}$

^aConcentration was 150 mM in all cases. ^bThe ratios were determined based on the isolated yields. ^cIsolated total yield of 2b. ^dThe ratios were determined by 400 MHz ¹H NMR spectra.

Table 3. The effect of concentration on the nucleophilic addition of Et_2NH to 1,3-dienylsulfone 1

	$Et2NH$ (1.5 equiv.) Лs THF, 25 °C, 72 h		Лs Et ₂ N 2 _b	
Entry	Conc. of Et_2NH/mM	$1/2b^a$	Yield/ $\%$ ^b	Z/E^c
	150	19/81	75	74/26
\overline{c}	75	51/49	48	93/7
3	50	59/41	39	95/5
$\overline{4}$	37.5	64/36	33	96/4
5 ^d	37.5	38/62	50	96/4
6	15	86/14	12	94/6

^aThe ratios were determined based on the isolated yields. ^bIsolated total yield of 2b. ^cThe ratios were determined by 400 MHz ¹H NMR spectra. d The reaction was carried out at 60 ${}^{\circ}$ C.

The effect of concentration is shown in Table 3. The lower concentration of $Et₂NH$ remarkably increased the Z-selectivity of 2b (Entries 2–4 and 6), though the reaction became sluggish.

The mechanism for predominant formation of (Z)-allylic sulfones $2b$ is not yet clear.⁵ To confirm the possibility of a concerted 1,4-addition mechanism (Figure 2, A), nucleophilic addition of Et_2NH (150 mM) to 3-fluoro-1-tosyl-1,3-butadiene (3) was investigated (Scheme 1, eq 1). Selective formation of (Z)- 3-fluoroallyl sulfone derivative 4 excluded the 1,4-addition mechanism. Furthermore, addition of Et_2NH (150 mM) to 1fluoro-1,3-dienylsulfone 5 mainly gave (Z)-allylic sulfone 6 (Scheme 1, eq 2), even though its syn-transition state forms 8π -electron system C which is not stabilized by the homoaromaticity. Thus, the contribution of 6π -electron homoaromaticity (Figure 2, B) was also ruled out.

Finally, the selective formation of (Z) -allylic sulfone 2b was rationalized by a "syn-effect," which could be mainly elucidated by $n/\sigma \rightarrow \pi^*$ interaction, but not 6 π -electron homoaromaticity (Scheme 2). That is, when a pair of electrons on nitrogen atom of Et₂NH interacts with π^* orbital of $C_{\gamma} = C_{\delta}$ at δ -position of 1 or 3, an anion would develop on γ -carbon changing from sp² to sp³. The *n*-electron pair of γ -carbanion can more effectively interact with π^* orbital of $C_\alpha = C_\beta$ in the eclipsed conformations **D** and E, in both of which the *n*-orbital is aligned with the π^* orbital $(n \to \pi^*$ interaction), and the conformation **F** can be neglected.⁶ Further, the contribution of $\sigma \to \pi^*$ interaction might determine

H δ γ X $Et_2N \leq H$ H $Solv$ H H Ts H H_{α} π π^* β \smile α γ δ π^* $\sigma_{\textrm{C-X}}$ *n* E_t N \oplus H \oplus Solv H H Ts H H_{α} π π^* $\gamma \gg \beta \sim a$ δ π^* *n* $Et₂N$ H Solv **1** $(X = H)$ $X = H$ ${}^{\beta}{}_{\alpha}$ γ δ (*Z*)**-2b F** H X β ^α γ δ $3(X = F)$ $E_{t_2}N^{\frac{1}{(+)}}$ H \cdots Solv **D** $\sigma_{\textrm{C-C}}$ *n* H H $X = F$ (*Z*)**-4** X $\sigma_{\textrm{C-C}}$ $\sigma_{\textrm{C-X}}$ X H Ts H H H $Et₂N$ H H… Solv ${}^{\beta}{}_{\alpha}$ H_{\prime} , β_αθ Ts
δ γ *Σ* H H Et_2N H H Et₂N H_、 *T*s $\mathsf{Et}_2\mathsf{N}$ H、 *人*Ts **E D** Solv F F **E**

 $H_{\prime \prime}_{\prime \prime \prime}$ β α $\alpha^{0.07}$ Ts

Scheme 2.

the preference of **D** or **E**, because $\sigma \rightarrow \pi^*$ interactions increase in the order of $\sigma_{C-H} \to \pi^* > \sigma_{C-C} \to \pi^* > \sigma_{C-F} \to \pi^*$, (Z)-2b was predominantly obtained in the case of $1 (X = H)$ via conformation E, while (Z)-4 was formed from 3 (X = F) via D.

Higher temperature and lower concentration might dissociate the aggregation of dialkylamine via hydrogen bonding to afford the more nucleophilic monomeric amine.

In conclusion, the Z-selective nucleophilic addition of amines to 1,3-dienylsulfone was well rationalized by a ''syneffect" which could be mainly elucidated by $n/\sigma \rightarrow \pi^*$ interaction.

References and Notes

- 1 T. Hirata, Y. Sasada, T. Ohtani, T. Asada, H. Kinoshita, H. Senda, K. Inomata, Bull. Chem. Soc. Jpn. 1992, 65, 75.
- 2 The "syn-effect" is herein defined as an effect which stabilizes the syn-conformation against the steric hindrance at the transition state.
- 3 Related studies on the ''syn-effect'': a) A. Shibayama, T. Nakamura, T. Asada, T. Shintani, Y. Ukaji, H. Kinoshita, K. Inomata, Bull. Chem. Soc. Jpn. 1997, 70, 381. b) T. Nakamura, S. K. Guha, Y. Ohta, D. Abe, Y. Ukaji, K. Inomata, Bull. Chem. Soc. Jpn. 2002, 75, 2031. c) S. K. Guha, A. Shibayama, D. Abe, Y. Ukaji, K. Inomata, Chem. Lett. 2003, 32, 778. d) S. K. Guha, Y. Ukaji, K. Inomata, Chem. Lett. 2003, 32, 1158. e) S. K. Guha, A. Shibayama, D. Abe, M. Sakaguchi, Y. Ukaji, K. Inomata, Bull. Chem. Soc. Jpn. 2004, 77, 2147. f) H. Takenaka, Y. Ukaji, K. Inomata, Chem. Lett. 2005, 34, 256. g) N. Takeda, T. Chayama, H. Takenaka, Y. Ukaji, K. Inomata, Chem. Lett. 2005, 34, 1140.
- 4 F. Näf, R. Decorzant, S. D. Escher, Tetrahedron Lett. 1982, 23, 5043.
- 5 Radical mechanism could be ruled out because the presence of TEMPO, N-hydroxyphthalimide, galvinoxyl free radical did not affect the Z/E ratios.
- 6 The effective $n \to \pi^*$ interaction cannot be involved in the conformation F.

Published on the web (Advance View) April 15, 2006; DOI: 10.1246/cl.2006.514

Ts

 H_{\prime} $\pi \pi \pi^*$

 π^*